

Концепция ракеты предельных параметров

Национальная технøлогическая инициатива

Соответствие программам развития

- Программа Роскосмоса по развитию коммерческой космонавтики
- Актуализированная Дорожная Карта «Аэронет» раздел Космос 2.0 (коммерческая космонавтика). Национальной Технологической Инициативы, SpaceNET

Технические требования Роскосмоса

- Стартовая масса не более 20 т
- Масса полезной нагрузки 250 кг, выводимой на орбиту высотой - 500 км
- Типовая полезная нагрузка 2 спутника «Сфера», плюс межорбитальный разгонный блок
- Стоимость единичного пуска не более \$3 млн.
- Цена за единицу выводимой полезной нагрузкине более \$12 тыс.

Ракета предельных параметров 2030 г- 28&Р (2БИП)

Национальная технøлогическая инициатива

Вариант 1- промежуточный

Конструктивные особенности

- Ракетно-прямоточный двигатель с эжектором (РПДэ)
- Средний удельный импульс на атмосферном участке
 6500 м/с, топливо керосин LOX
- Широко- диапазонный ЖРД с кольцевым
- регулируемым соплом. • Три ступени: эжектор с баками, баки и головной блок с ПН, ЖРД и САУ.

Вариант 2 - экстре НТИ

Конструктивные особенности

• Детонационный ракетно-прямоточный двигатель (РПДДэ)

Длина, м: 7,5-9.6

Масса СЛРН, кг: 6092 кг

Давл

КС, 120 атм

Диамотр

<u>~</u> 1.85

 Средний удельный импульс на атмосферном участке - 8500 м/с, топливо ацетам - LOX

Принципиальная схема РПД с эжектором

Национальная технøлогическая инициатива

Скорость [м/с]

Кольцевое сопло - обращаем недостатки в достоинства

Национальная технøлогическая инициатива

Зависимость температуры продуктов сгорания *T*₀ на выходе из камеры смешения в зависимости от коэффициента смешения *n*

- 1 Идеальное расширение
- 2 сопло AeroSpike
- 3 сопло Лаваля
- 4 усеченный AeroSpike

BOEHMEX

Термоэмиссионное охлаждение центрального тела и эжектора

Национальная технøлогическая инициатива

Минус 1000°К

Термоэмиссионное охлаждение центрального тела сопла

Внешнее охлаждение с тонким анодом

Внутренне охлаждение с выбросом рабочего тела

Вакуумный диод (работает)

Характеристики ДД на ацетаме

Национальная технøлогическая инициатива

1083 (4.6)	32.8	495 (2.6)	4.3	258(1.8)	7.55	Пропан-воздух
609(3.0)	12.3	401 (2.3)	2.95	205 (1.6)	4.2	Водород-воздух
1025 (4.4)	31.0	477(2.6)	4.25	250(1.8)	7.3	Метан-воздух
865(3.9)	26.1	426(2.4)	4.0	225(1.7)	6.6	Ацетилен-воздух
$T_3 {}^{\circ}\mathrm{C}$ (T_3/T_0)	J_3	$T_2 {}^{\circ}\mathrm{C} \ (T_2/T_0)$	J_2	$T_1 {}^{\circ}\mathrm{C}$ (T_1/T_0)	J_1	Газовая смесь

Интенсивности скачков и температура за скачками СМК при нормальных условиях и скорости Чепмена-Жуге

Аммиачный турбогенератор, давление на

Изменение давления на стенках камеры сгорания ротационного детонационного двигателя за прямым скачком и двумя косыми. Давление подачи - 8 атм.

Зависимость удельного импульса РПДэ от давления в камере сгорания первого контура и коэффициента смешения п потоков первого и второго контуров при скорости полёта М=2 на высоте *h*=12 км

Характеристики идеального ПВРД

Национальная технøлогическая инициатива

1 - идеальный изоэнтропический воздухозаборник,

- 2 воздухозаборник с одним косым скачком и одним прямым,
- 3- воздухозаборник с двумя косыми скачками и одним прямым,
- 4 дозвуковой воздухозаборник с прямым скачком на входе

Зависимость удельного импульса идеального ПВРД от числа Маха полёта

Сравнение характеристики РПДэ, РПД и идеального ПВРД

Национальная технøлогическая инициатива

в камере сгорания первого контура $p_{0\mathrm{I}} = 20$ атм, высота h = 12 км коэффициента тяги C_p ракетно-прямоточного двигателя с эжектором Сравнение скоростных характеристик удельного импульса J и (*РПДэ*) и без эжектора (*РПД*), топливо керосин, Q = 4000 ккал/кг, давление

> Зависимость степени суммарной сжатия π потока второго контура и отношение коэффициентов тяги Ср РПДэ и идеального ПВРД от числа Маха М

BOEHMEX

технøлогическая инициатива Национальная

теплозащитного покрытия на основе оксида кремния (Si) температурные ограничения для титана (Ti), инконеля (Inc) и Траектория выведения при воздушном (....) и наземном (- -) старте, Т -

Скорость, при которой происходит

N

ಲು

4

Гепловая смерть ПВРД

Преимущество разгона с постоянной перегрузкой

Национальная технøлогическая инициатива

Оптимальная перегрузка *n*₀ при показательном законе изменения массы при различных значениях интеграла гравитационных потерь *Ig* и относительной массе конструкции ступени µ

Постоянная перегрузка

Зависимость гравитационных ∆Vg и аэродинамических потерь ∆Vх характеристической скорости.

Оптимальная циклограмма при пологом старте на атмосферном участке. Постоянный расход.

